Author:
Tang Xiaodong,Huang Mutao
Abstract
Lake eutrophication is a global water environmental problem and has become a research focus nowadays. Chlorophyll a concentration is an important index in terms of evaluating lake eutrophication. The aim of this study was to build an effective and universal empirical model for simulation of chlorophyll a concentration in Donghu Lake. On the basis of the relationship between chlorophyll a concentration and dissolved oxygen (DO), water temperature (T), total nitrogen (TN), and total phosphorus (TP), models for simulating chlorophyll a concentration were built by using simulated annealing (SA), genetic algorithm (GA), artificial bee colony (ABC), and particle swarm optimization (PSO) to optimize parameters of support vector machine (SVM). Moreover, a collaborative mode (Col-SVM model) was built by introducing data assimilation, and meanwhile, accuracy and universality of the model were studied. Modeling results showed that the application of optimization algorithms and data assimilation improved the performance of modeling based on SVM. Model simulation results demonstrated that the Col-SVM model has high accuracy, decent stability, and good simulation effect; the root mean square error (RMSE), mean absolute percentage error (MAPE), Nash–Sutcliffe efficiency coefficient (NSE), bias, and mean relative error (MRE) between simulated values and observed values were 10.07 μg/L, 0.31, 0.96, −0.050, and 0.15, respectively. In addition, model universality analysis results revealed that the Col-SVM model has good universality and can be used to simulate the chlorophyll a concentration of Donghu Lake at different times. Overall, we have built an effective and universal simulation model of chlorophyll a concentration that provides a new idea and method for chlorophyll a concentration modeling.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
the Science and Technology Project of Central China Branch of State Grid
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献