Alpine Wetland Evolution and Their Response to Climate Change in the Yellow-River-Source National Park from 2000 to 2020

Author:

Ma Tao,She Yandi,Zhao Li,Hu Bixia,Feng Xueke,Zhao Jing,Zhao Zhizhong

Abstract

Clarifying the response of wetland changes to climate change can improve the scientific conservation and utilization capabilities of wetland ecosystems, which is vital for their sustainable development. In this study, the spatial distribution and area changes of the different types of wetlands in the Yellow-River-Source National Park (YRSNP) were obtained using the object-based classification method for the years 2000, 2010, and 2020. The relationship between wetland change and climate factors was investigated by combining grey relation analysis and correlation analysis. The response of wetland change to different climatic factors was consequently clarified. The results showed that the river wetlands and lake wetlands increased significantly from the year 2000 to 2010 (4.04% and 4.21%, respectively). However, the total wetland area demonstrated a decreasing trend (7.08%), primarily due to the significant decrease in the marsh wetlands (6.81%). The total wetland area demonstrated a slightly increasing trend from the year 2010 to 2020 (0.14%), in which river wetlands and lake wetlands increased by 3.25% and 2.09%, respectively, while the marsh wetlands demonstrated a tendency to be stable. From the year 2000 to 2010, 75.53% of precipitation and 27.68% of temperature demonstrated a significant increase and an obvious warm–humid climate trend. However, from the year 2010 to 2020, the trend of increasing precipitation weakened, the temperature decreased slightly, and the warm–humid climate trend was not significant. From the year 2000 to 2020, the YRSNP river wetlands and lake wetlands were significantly and positively correlated with temperature and precipitation, while the marsh wetlands were most affected by climate warming, especially the warm-season temperatures. The spatial–temporal difference was not obvious in the correlation coefficient between marsh wetlands area change and the precipitation and temperature. The results of the study can provide a theoretical basis and technical support for the conservation of wetland ecosystems in the Three-River-Source National Park.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3