Sar2color: Learning Imaging Characteristics of SAR Images for SAR-to-Optical Transformation

Author:

Guo ZheORCID,Guo HaojieORCID,Liu Xuewen,Zhou Weijie,Wang Yi,Fan Yangyu

Abstract

Optical images are rich in spectral information, but difficult to acquire under all-weather conditions, while SAR images can overcome adverse meteorological conditions, but geometric distortion and speckle noise will reduce the quality of SAR images and thus make image interpretation more challenging. Therefore, transforming SAR images to optical images to assist SAR image interpretation will bring opportunities for SAR image application. With the advancement of deep learning technology, the ability of SAR-to-optical transformation has been greatly improved. However, most of the current mainstream transformation methods do not consider the imaging characteristics of SAR images, and there will be failures such as noisy color spots and regional landform deformation in the generated optical images. Moreover, since the SAR image itself does not contain color information, there also exist many color errors in these results. Aiming at the above problems, Sar2color, an end-to-end general SAR-to-optical transformation model, is proposed based on a conditional generative adversarial network (CGAN). The model uses DCT residual block to reduce the effect of coherent speckle noise on the generated optical images, and constructs the Light atrous spatial pyramid pooling (Light-ASPP) module to mitigate the negative effect of geometric distortion on the generation of optical images. These two designs ensure the precision of texture details when the SAR image is transformed into an optical image, and use the correct color memory block (CCMB) to improve the color accuracy of transformation results. Towards the Sar2color model, we have carried out evaluations on the homologous heterogeneous SAR image and optical image pairing dataset SEN1-2. The experimental results show that, compared with other mainstream transformation models, Sar2color achieves the state-of-the-art effect on all three objective and one subjective evaluation metrics. Furthermore, we have carried out various ablation experiments, and the results show the effectiveness of each designed module of Sar2color.

Funder

the National Natural Science Foundation of China

Key Research and Development Project of Shaanxi Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3