Standoff Infrared Measurements of Chemical Plume Dynamics in Complex Terrain Using a Combination of Active Swept-ECQCL Laser Spectroscopy with Passive Hyperspectral Imaging

Author:

Phillips Mark C.,Bernacki Bruce E.,Conry Patrick T.ORCID,Brown Michael J.

Abstract

Chemical plume detection and modeling in complex terrain present numerous challenges. We present experimental results from outdoor releases of two chemical tracers (sulfur hexafluoride and Freon-152a) from different locations in mountainous terrain. Chemical plumes were detected using two standoff instruments collocated at a distance of 1.5 km from the plume releases. A passive long-wave infrared hyperspectral imaging system was used to show time- and space-resolved plume transport in regions near the source. An active infrared swept-wavelength external cavity quantum cascade laser system was used in a standoff configuration to measure quantitative chemical column densities with high time resolution and high sensitivity along a single measurement path. Both instruments provided chemical-specific detection of the plumes and provided complementary information over different temporal and spatial scales. The results show highly variable plume propagation dynamics near the release points, strongly dependent on the local topography and winds. Effects of plume stagnation, plume splitting, and plume mixing were all observed and are explained based on local topographic and wind conditions. Measured plume column densities at distances ~100 m from the release point show temporal fluctuations over ~1 s time scales and spatial variations over ~1 m length scales. The results highlight the need for high-speed and spatially resolved measurement techniques to provide validation data at the relevant spatial and temporal scales required for high-fidelity terrain-aware microscale plume propagation models.

Funder

the National Nuclear Security Administration, Defense Nu-clear Nonproliferation R&D Office, and the Department of Energy Phase I SBIR program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3