LAI-Based Phenological Changes and Climate Sensitivity Analysis in the Three-River Headwaters Region

Author:

Dai Xiaoai,Fan Wenjie,Shan YunfengORCID,Gao Yu,Liu ChaoORCID,Nie Ruihua,Zhang DonghuiORCID,Li WeileORCID,Zhang LifuORCID,Sun Xuejian,Liu Tiegang,Yang ZhengliORCID,Fu Xiao,Ma Lei,Liang Shuneng,Wang Youlin,Lu HengORCID

Abstract

Global climate changes have a great impact on terrestrial ecosystems. Vegetation is an important component of ecosystems, and the impact of climate changes on ecosystems can be determined by studying vegetation phenology. Vegetation phenology refers to the phenomenon of periodic changes in plants, such as germination, flowering and defoliation, with the seasonal change of climate during the annual growth cycle, and it is considered to be one of the most efficient indicators to monitor climate changes. This study collected the global land surface satellite leaf area index (GLASS LAI) products, meteorological data sets and other auxiliary data in the Three-River headwaters region from 2001 to 2018; rebuilt the vegetation LAI annual growth curve by using the asymmetric Gaussian (A-G) fitting method and extracted the three vegetation phenological data (including Start of Growing Season (SOS), End of Growing Season (EOS) and Length of Growing Season (LOS)) by the maximum slope method. In addition, it also integrated Sen’s trend analysis method and the Mann-Kendall test method to explore the temporal and spatial variation trends of vegetation phenology and explored the relationship between vegetation phenology and meteorological factors through a partial correlation analysis and multiple linear regression models. The results of this study showed that: (1) the SOS of vegetation in the Three-River headwaters region is concentrated between the beginning and the end of May, with an interannual change rate of −0.14 d/a. The EOS of vegetation is concentrated between the beginning and the middle of October, with an interannual change rate of 0.02 d/a. The LOS of vegetation is concentrated between 4 and 5 months, with an interannual change rate of 0.21 d/a. (2) Through the comparison and verification with the vegetation phenological data observed at the stations, it was found that the precision of the vegetation phonology extracted by the A-G method and the maximum slope method based on GLASS LAI data is higher (MAE is 7.6 d, RMSE is 8.4 d) and slightly better than the vegetation phenological data (MAE is 9.9 d, RMSE is 10.9 d) extracted based on the moderate resolution imaging spectroradiometer normalized difference vegetation index (MODIS NDVI) product. (3) The correlation between the SOS of vegetation and the average temperature in March–May is the strongest. The SOS of vegetation is advanced by 1.97 days for every 1 °C increase in the average temperature in March–May; the correlation between the EOS of vegetation and the cumulative sunshine duration in August–October is the strongest. The EOS of vegetation is advanced by 0.07 days for every 10-h increase in the cumulative sunshine duration in August–October.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3