Many-Objective RadarCom Signal Design via NSGA-II Genetic Algorithm Implementation and Simulation Analysis

Author:

Washington Richard,Garmatyuk DmitriyORCID,Mudaliar Saba,Narayanan Ram M.ORCID

Abstract

In this communication, we investigate the performance of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) in many-objective optimization scenarios pertaining to joint radar and communication functionality. We introduce five objectives relevant to sensing and secure communications and develop a cost function where these objectives can be individually prioritized by a user. We consider three scenarios: Radar Priority, Communication Priority, and All (Objectives) Equal; we then demonstrate the optimization results using an orthogonal frequency-division multiplexing (OFDM) radarcom signal. The objectives with selected weights are shown to improve system performance and thereby validate the viability of our approach. The Radar Priority scenario showed the best improvement in probability of detection, PSLR, and PAPR. Compared to the baseline performance values, the improvements were: from 94.05% to 96%, from 11.7 to 13.6 dB, and from 9.46 to 7.09 dB, respectively. The communication scenario saw the best improvement in BER and clutter similarity (measured by NRMSE) from 3.52% to 0.39% and 0.87 to 0.59, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference25 articles.

1. Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing

2. Simultaneous radar and communication emissions from a common aperture, part I: Theory;McCormick;Proceedings of the IEEE Radar Conference,2017

3. Simultaneous radar and communication emissions from a common aperture, part II: Experimentation;McCormick;Proceedings of the IEEE Radar Conference,2017

4. Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead

5. Low Probability of Intercept-Based Optimal OFDM Waveform Design Strategy for an Integrated Radar and Communications System

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3