Intercomparison of Cloud Vertical Structures over Four Different Sites of the Eastern Slope of the Tibetan Plateau in Summer Using Ka-Band Millimeter-Wave Radar Measurements

Author:

Wan XiaORCID,Zheng JiafengORCID,Wan Rong,Xu Guirong,Qin Jianfeng,Yi Lan

Abstract

The eastern slope of the Tibetan Plateau is a crucial corridor of water-vapor transport from the Tibetan Plateau to Eastern China. This is also a region with active cloud initiation, and the locally hatched cloud systems have a profound impact on the radiation budget and hydrological cycle over the downstream Sichuan Basin and the middle reach of the Yangtze River. It is noteworthy that there is a strong diversification in the characteristics and evolution of the ESTP cloud systems due to the complex terrain. Therefore, in this study, ground-based Ka-band millimeter-wave cloud radar measurements collected at the Ganzi (GZ), Litang (LT), Daocheng (DC), and Jiulong (JL) sites of the ESTP in 2019 were analyzed to compare the vertical structures of summer nonprecipitating clouds, including cloud occurrence frequency, radar reflectivity factor, cloud base height, cloud top height, and cloud thickness. The occurrence frequency exhibits two peaks on the ESTP with maximum values of ~20% (2–4 km) and 15% (7–9 km), respectively. The greatest (smallest) occurrence frequency occurs in the JL (GZ). The cloud occurrence frequency of all sites increases rapidly in the afternoon, and the occurrence frequency of the DC presents larger values at 2–4 km. In contrast, the occurrence frequency in the JL shows another increase from 2000 LT to midnight at 7–11 km. Stronger radar echoes occur most frequently in the LT at 5–7 km, and hydrometeor sizes and phase states vary dramatically in mixed-phase clouds. A small number of radar echoes occur at midnight in the JL. A characteristic bimodality of the cloud base height and top height for single-layer, double-layer, and triple-layer clouds was observed. Clouds show a higher base height in the GZ and higher top height in the JL. The ESTP is dominated by thin clouds with thicknesses of 200–400 m. The cloud base height, top height, and thickness exhibit an increase in the afternoon, and higher top height occurs more frequently from midnight to the next early morning in the JL because of its mountain-valley terrain.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3