Multi-Sensor Sea Surface Temperature Products from the Australian Bureau of Meteorology

Author:

Govekar Pallavi DevidasORCID,Griffin Christopher,Beggs Helen

Abstract

Sea surface temperature (SST) products that can resolve fine scale features, such as sub-mesoscale eddies, ocean fronts and coastal upwelling, are increasingly in demand. In response to user requirements for gap-free, highest spatial resolution, best quality and highest accuracy SST data, the Australian Bureau of Meteorology (BoM) produces operational, real-time Multi-sensor SST level 3 products by compositing SST from Advanced Very-High-Resolution Radiometer (AVHRR) sensors on Meteorological Operational satellite (MetOp)-B and National Oceanic and Atmospheric Administration (NOAA) 18, along with SST from Visible Infrared Imaging Radiometer Suite (VIIRS) sensors on the Suomi National Polar-orbiting Partnership (Suomi NPP) and NOAA 20 polar-orbiting satellites for the Australian Integrated Marine Observing System (IMOS) project. Here we discuss our method to combine data from different sensors and present validation of the satellite-derived SST against in situ SST data. The Multi-sensor Level 3 Super Collated (L3S) SSTs exhibit significantly greater spatial coverage and improved accuracy compared with the pre-existing IMOS AVHRR-only L3S SSTs. When compared to the Geo Polar Blended level 4 analysis SST data over the Great Barrier Reef, Multi-sensor L3S SST differs by less than 1 °C while exhibiting a wider range of SSTs over the region. It shows more variability and restores small-scale features better than the Geo Polar Blended level 4 analysis SST data. The operational Multi-sensor L3S SST products are used as input for applications such as IMOS OceanCurrent and the BoM ReefTemp Next-Generation Coral Bleaching Nowcasting service and provide useful insight into the study of marine heatwaves and ocean upwelling in near-coastal regions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3