Optimal Generation Capacity Allocation and Droop Control Design for Current Sharing in DC Microgrids

Author:

Chapaloglou Spyridon12ORCID,Abdolmaleki Babak2ORCID,Tedeschi Elisabetta23ORCID

Affiliation:

1. SINTEF Energy Research, 7465 Trondheim, Norway

2. Department of Electric Energy, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway

3. Department of Industrial Engineering, University of Trento, 38123 Trento, Italy

Abstract

Considering the increasing amounts of renewable energy generation and energy storage required to meet ambitious environmental goals, it is clear that the next generation of power grids will be dominated by converter-connected devices. In addition, the increasing share of loads connected via power electronics and the general transition to non-synchronous grids with distributed generators make dc microgrids an attractive future alternative. However, achieving optimal utilization of distributed generators in such cases is a complex task, as the performance depends on both the grid and control design. In this paper, we consider such a case where the optimal utilization of distributed generators is achieved by optimal power sharing while taking into account the grid topology, the available generators, and the way they are controlled. For the latter, we consider a droop-based decentralized control scheme whose primary objective is to achieve voltage regulation in the allowable operating range. A novel mixed-integer optimization approach is proposed to identify the optimal converter size and location in the network so that the microgrid can operate safely and with optimal use of the available resources. Time-domain simulations are used to validate the proposed approach and demonstrate its robustness to uncertainty in generator availability.

Funder

Onassis Foundation Scholarship

Department of Electric Energy, NTNU

CINELDI—Centre for Intelligent Electricity Distribution

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accounting Resource Sharing Management Risk Assessment Model of Artificial Intelligence Algorithm;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3