Intentional Controlled Islanding Strategy for Wind Power Plant Integrated Systems

Author:

Babaei Mehdi1,Abu-Siada Ahmed1ORCID

Affiliation:

1. School of Electrical Engineering, Computing, Mathematical Sciences, Curtin University, Bentley, WA 6102, Australia

Abstract

The concept of intentional controlled islanding (ICI) is introduced as a proactive measure to safeguard the power system against blackouts in the event of significant disturbances. It involves strategically partitioning the system into self-healing islands, thereby mitigating the impact of such disturbances. This study introduces a new framework for creating stable, controlled islands in power systems with large-scale wind power plants. The proposed islanding strategy takes into account the impact of wind power plants on the coherency grouping of generators as a constraint in the ICI problem. The proposed algorithm employs the Virtual Synchronous Motion Equation (VSME) model of asynchronous generators to replace wind power plants in power systems and groups all generators, including synchronous generators and wind turbine generators, based on their dynamic coupling. Support Vector Clustering is employed in the ICI problem to determine the coherent generator clusters as the cores of the formed islands. The algorithm can identify the optimal number of islands without prior information about the number of clusters. In this study, a Mixed Integer Linear Programming (MILP) model is formulated to address the ICI problem with the objective of minimising the power imbalance in each island after splitting while ensuring the transient stability and dynamic frequency stability of ICI. Simulation results on modified 39-bus and 118-bus test power systems demonstrate that integrating a Virtual Inertia Controller into the wind-integrated power systems results in a high-inertia power system that behaves similarly to a conventional power system with only synchronous generators during the islanding procedure.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3