Chemical Modeling of Constant-Volume Combustion of the Mixture of Methane and Hydrogen Used in Spark Ignition Otto Cycles

Author:

Feidt Michel1ORCID,Dumitrascu Gheorghe2ORCID,Lupu Ana-Georgiana2

Affiliation:

1. Laboratory of Energetics and of Theoretical and Applied Mechanics, UMR 7563, University of Lorraine, 54505 Vandoeuvre-lès-Nancy, France

2. Mechanical Engineering Faculty, “Gheorghe ASACHI” Technical University of Iasi, 700050 Iasi, Romania

Abstract

This paper develops a chemical model for a closed constant-volume combustion of a gaseous mixture of methane and hydrogen. Since the combustion is strongly dependent on temperature, pressure and fuel composition, these had chosen the actual corresponding thermodynamic systems in this kind of combustion, i.e., spark ignition (SI) reciprocating engines, to assess combustion parameters and flue gas composition. The actual cycles impose extra restrictive operational conditions through the engine’s-volumetric-compression ratio, the geometry of the combustion volume, the preparation method of the mixture of methane and hydrogen, (e.g., one fueling way of a homogeneous mixture obtained in a specific device or by two separate fueling ways for components), the cooling system and the delivered power. The chemical model avoided the unknown influences in order to accurately explain the influence of hydrogen upon constant-volume combustion and flue gas composition. The model adopted hypotheses allowing to generalize evaluated results, i.e., the isentropic compression and expansion processes, in closed constant-volume combustion caused by two successive steps that obey the energy and mass conservation laws, and the flue gas exhaust, which is also described by two steps, i.e., isentropic expansion through the flow section of exhaust valves followed by a constant pressure stagnation (this process, in fact, corresponds to a direct throttling process). The chemical model assumed the homogeneous mixtures of gases with variable heat capacity functions of temperatures, the Mendeleev—Clapeyron ideal gas state equation, and the variable chemical equilibrium constants for the chosen chemical reactions. It was assumed that the flue gas chemistry prevails during isentropic expansion and during throttling of exhaust flue gas. The chemical model allowed for evaluation of flue gas composition and noxious emissions. The numerical results were compared with those recently reported in other parallel studies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3