Global and Regional Variations and Main Drivers of Aerosol Loadings over Land during 1980–2018

Author:

Sun JieORCID,Ding Kaihua,Lai Zulong,Huang HaijunORCID

Abstract

Aerosol particles originated from anthropogenic emissions, volcanic eruptions, biomass burning, and fossil combustion emissions, and their radiative effect is one of the most uncertain factors in climate change. Meanwhile, aerosol particles in fine particle size could also cause irreversible effects on the human respiratory system. This study attempted to analyse the spatial and temporal variations of global aerosol optical depth (AOD, 550 nm) during 1980–2018 using MERRA-2 aerosol reanalysis products and to investigate the effects of natural/anthropogenic emissions of different types of aerosols on AOD values. The results show that the global annual mean AOD values kept high levels with significant fluctuations during 1980–1995 and showed a consistent decreasing and less volatile trend after 1995. Spatially, the AOD values are relatively higher in the Northern Hemisphere than in the Southern Hemisphere, especially in North Africa (0.329), Northern India (0.235), and Eastern China (0.347), because of the intensive natural/anthropogenic aerosol emissions there. The sulphate-based aerosols emitted by biomass burning and anthropogenic emissions are the main types of aerosols worldwide, especially in densely populated and industrialized regions such as East Asia and Europe. Dust aerosols are also the main aerosol type in desert areas. For example, the AOD and AODP values for the Sahara Desert are 0.3178 and 75.32%, respectively. Both black carbon aerosols (BC) and organic carbon aerosols (OC) are primary or secondary from carbon emissions of fossil fuels, biomass burning, and open burning. Thus, the regions with high BC and OC aerosol loadings are mainly located in densely populated or vegetated areas such as East Asia, South Asia, and Central Africa. Sea salt aerosols are mainly found in coastline areas along the warm current pathway. This study could help relevant researchers in the fields of atmospheric science, environmental protection, air pollution, and ecological environment to understand the global spatial–temporal variations and main driving factors of aerosol loadings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3