Multitask Learning-Based for SAR Image Superpixel Generation

Author:

Liu JiafeiORCID,Wang Qingsong,Cheng Jianda,Xiang DeliangORCID,Jing Wenbo

Abstract

Most of the existing synthetic aperture radar (SAR) image superpixel generation methods are designed based on the raw SAR images or artificially designed features. However, such methods have the following limitations: (1) SAR images are severely affected by speckle noise, resulting in unstable pixel distance estimation. (2) Artificially designed features cannot be well-adapted to complex SAR image scenes, such as the building regions. Aiming to overcome these shortcomings, we propose a multitask learning-based superpixel generation network (ML-SGN) for SAR images. ML-SGN firstly utilizes a multitask feature extractor to extract deep features, and constructs a high-dimensional feature space containing intensity information, deep semantic informantion, and spatial information. Then, we define an effective pixel distance measure based on the high-dimensional feature space. In addition, we design a differentiable soft assignment operation instead of the non-differentiable nearest neighbor operation, so that the differentiable Simple Linear Iterative Clustering (SLIC) and multitask feature extractor can be combined into an end-to-end superpixel generation network. Comprehensive evaluations are performed on two real SAR images with different bands, which demonstrate that our proposed method outperforms other state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3