Spatial Stratification Method for the Sampling Design of LULC Classification Accuracy Assessment: A Case Study in Beijing, China

Author:

Dong ShiweiORCID,Guo Hui,Chen ZiyueORCID,Pan Yuchun,Gao Bingbo

Abstract

Spatial sampling design is important for accurately assessing land use and land cover (LULC) classification results from remote sensing data. Spatial stratification can dramatically improve spatial sampling efficiency by dividing the study area into several strata when classification correctness is spatially stratified heterogeneous. By integrating the LULC classification results from different sources and spatial resolutions, a spatial stratification method for spatial sampling of accuracy assessment is presented in this paper. Its efficiency is demonstrated in the case study using LULC data of Beijing, China, in the following steps. First, we standardized and reclassified multiresolution remote sensing data, including China’s land use/cover datasets (CLUDs) from 2017 (resolution: 30 m), 500 m MCD12Q1, and 10 m FROM-GLC10 data, into six classes. Second, we customized stratification rules, formulated a technical specification to realize 11 strata using CLUDs and MCD12Q1, and employed FROM-GLC10 as the reference data for accuracy assessment. Furthermore, six sample sets with sizes of 16,417; 1821; 652; 337; 198; and 142 were drawn using different methods, and their overall accuracy (OA), deviation accuracy (DA), root-mean-square error (RMSE), and standard deviation (STDEV) values were also evaluated to demonstrate the efficiency brought by spatial stratification. Compared with the spatial even sampling method, the OAs of the stratified even sampling method adopting the proposed stratification method was much closer to the true OA, and the corresponding RMSE and STDEV results decreased from 2.097% and 2.127% to 0.914% and 0.713%, respectively, due to the contribution of spatial stratification in the sampling scheme. The method can be used to distinguish the differences and improve the representativeness of samples, and it can be employed to select validation samples for LULC classification.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3