Stripe Noise Detection of High-Resolution Remote Sensing Images Using Deep Learning Method

Author:

Li BinboORCID,Zhou Ying,Xie Donghai,Zheng Lijuan,Wu Yu,Yue Jiabao,Jiang Shaowei

Abstract

Stripe noise is considered one of the largest issues in space-borne remote sensing. The features of stripe noise in high-resolution remote sensing images are varied in different spatiotemporal conditions, leading to limited detection capability. In this study, we proposed a new detection algorithm (LSND: a linear stripe noise detection algorithm) considering stripe noise as a typical linear target. A large-scale stripe noise dataset for remote sensing images was created through linear transformations, and the target recognition of stripe noise was performed using deep convolutional neural networks. The experimental results showed that for sub-meter high-resolution remote sensing images such as GF-2 (GaoFen-2), our model achieved a precision of 98.7%, recall of 93.8%, F1-score of 96.1%, AP of 92.1%, and FPS of 35.71 for high resolution remote sensing images. Furthermore, our model exceeded ~40% on the accuracy and ~20% on the speed of the general models. Stripe noise detection would be helpful to detect the qualities of space-borne remote sensing and improve the quality of the images.

Funder

the program of Youth Innovation Promotion Association of CAS

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference57 articles.

1. Radiometric equalization of nonperiodic striping in satellite data

2. Review Article Radiometric correction of visible and infrared remote sensing data at the Canada Centre for Remote Sensing

3. Destriping CMODIS Based on FIR Method;Chen;J. Remote. Sens.,2004

4. Method of removing striping noise in CCD image;Xiu;Dianzi Qijian/J. Electron Devices,2005

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3