Associations between Street-View Perceptions and Housing Prices: Subjective vs. Objective Measures Using Computer Vision and Machine Learning Techniques

Author:

Xu Xiang,Qiu WaishanORCID,Li WenjingORCID,Liu Xun,Zhang ZiyeORCID,Li Xiaojiang,Luo DanORCID

Abstract

This study investigated the extent to which subjectively and objectively measured street-level perceptions complement or conflict with each other in explaining property value. Street-scene perceptions can be subjectively assessed from self-reported survey questions, or objectively quantified from land use data or pixel ratios of physical features extracted from street-view imagery. Prior studies mainly relied on objective indicators to describe perceptions and found that a better street environment is associated with a price premium. While very few studies have addressed the impact of subjectively-assessed perceptions. We hypothesized that human perceptions have a subtle relationship to physical features that cannot be comprehensively captured with objective indicators. Subjective measures could be more effective to describe human perceptions, thus might explain more housing price variations. To test the hypothesis, we both subjectively and objectively measured six pairwise eye-level perceptions (i.e., Greenness, Walkability, Safety, Imageability, Enclosure, and Complexity). We then investigated their coherence and divergence for each perception respectively. Moreover, we revealed their similar or opposite effects in explaining house prices in Shanghai using the hedonic price model (HPM). Our intention was not to make causal statements. Instead, we set to address the coherent and conflicting effects of the two measures in explaining people’s behaviors and preferences. Our method is high-throughput by extending classical urban design measurement protocols with current artificial intelligence (AI) frameworks for urban-scene understanding. First, we found the percentage increases in housing prices attributable to street-view perceptions were significant for both subjective and objective measures. While subjective scores explained more variance over objective scores. Second, the two measures exhibited opposite signs in explaining house prices for Greenness and Imageability perceptions. Our results indicated that objective measures which simply extract or recombine individual streetscape pixels cannot fully capture human perceptions. For perceptual qualities that were not familiar to the average person (e.g., Imageability), a subjective framework exhibits better performance. Conversely, for perceptions whose connotation are self-evident (e.g., Greenness), objective measures could outperform the subjective counterparts. This study demonstrates a more holistic understanding for street-scene perceptions and their relations to property values. It also sheds light on future studies where the coherence and divergence of the two measures could be further stressed.

Funder

Kermit C. & Janice I. Parsons Scholarship

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3