Abstract
Ground deformation measurements in mining areas play a key role in revealing the surface subsidence law, retrieving the subsidence parameters, warning of geological disasters and restoring the surface ecology. With the development of science and technology, there have emerged a great number of monitoring techniques and buildings of diverse protection levels. The diversity of monitoring techniques and the multiplicity of monitoring objects have brought challenges for surface deformation monitoring in the coal industry. Based on the existing deformation monitoring techniques, this paper established a framework of “space-sky-ground” collaborative monitoring system in mining area. We also constructed an AHP-TOPSIS (Analytic Hierarchy Process method- Technique for Order Preference by Similarity to an Ideal Solution) preference model of “space-sky-ground” collaborative monitoring of surface deformation in mining area, and carried out engineering application. Our study shows that the framework of the “space-sky-ground” collaborative monitoring system for surface subsidence in mining areas established in this paper, combined with the AHP-TOPSIS monitoring preference model, which can fully combine the advantages of each monitoring technique, overcome the limitations of a single monitoring technique, comprehensively obtain the surface subsidence data and work out the surface deformation subsidence pattern. This information provides a data and technical support for surface environment management.
Funder
Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献