Abstract
The search for clouds in satellite images is a challenging subject which still attracts a lot of attention due to the amount and quality of data, which is growing at a tremendous pace, the development of satellite techniques and methods, inexpensive equipment, and automation of satellite imaging processes. This paper presents a new approach to the assessment of cloudiness based on the use of the theory of moments with invariants. The values of moments with invariants, determined on the basis of the available cloudiness maps, create a new, valuable set of data, which are the geometrical parameters of the scene representing the cloud cover. In further research, the obtained data sets will be used in machine learning methods, deep machine learning methods, etc. The method is used for different conditions, including different angular positions of the Sun and time periods. The effectiveness of the method is checked on the basis of comparing the entropy results of the input maps after subtracting clouds masked by various methods. The obtained results additionally indicate the potential of the moments method as a support for the existing methods of estimating cloudiness over the sea surface.
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献