The Coastal El Niño Event of 2017 in Ecuador and Peru: A Weather Radar Analysis

Author:

Rollenbeck RütgerORCID,Orellana-Alvear JohannaORCID,Bendix JörgORCID,Rodriguez Rodolfo,Pucha-Cofrep FranzORCID,Guallpa Mario,Fries AndreasORCID,Célleri Rolando

Abstract

The coastal regions of South Ecuador and Peru belong to the areas experiencing the strongest impact of the El Niño Southern Oscillation phenomenon. However, the impact and dynamic development of weather patterns during those events are not well understood, due to the sparse observational networks. In spite of neutral to cold conditions after the decaying 2015/16 El Niño in the central Pacific, the coastal region was hit by torrential rainfall in 2017 causing floods, erosion and landslides with many fatalities and significant damages to infrastructure. A new network of X-band weather radar systems in South Ecuador and North Peru allowed, for the first time, the spatio-temporally high-resolution monitoring of rainfall dynamics, also covering the 2017 event. Here, we compare this episode to the period 2014–2018 to point out the specific atmospheric process dynamics of this event. We found that isolated warming of the Niño 1 and 2 region sea surface temperature was the initial driver of the strong rainfall, but local weather patterns were modified by topography interacting with the synoptic situation. The high resolution radar data, for the first time, allowed to monitor previously unknown local spots of heavy rainfall during ENSO-related extreme events, associated with dynamic flow convergence initiated by low-level thermal breezes. Altogether, the coastal El Niño of 2017, at the same time, caused positive rainfall anomalies in the coastal plain and on the eastern slopes of the Andes, the latter normally associated only with La Niña events. Thus, the 2017 event must be attributed to the La Niña Modoki type.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Hyperspectral Remote Sensing Images Using Deep Learning;Proceedings of Data Analytics and Management;2024

2. Assessment of Parameters of the Generalized Extreme Value Distribution in Rainfall of the Peruvian North;Revista Politécnica;2023-11-14

3. An information supply chain allowing data analytics for the network of weather stations Niño 5;2023 IEEE XXX International Conference on Electronics, Electrical Engineering and Computing (INTERCON);2023-11-02

4. Understanding the impact of hydrodynamics on coastal erosion in Latin America: a systematic review;Frontiers in Environmental Science;2023-10-04

5. Effect of extreme El Niño events on the precipitation of Ecuador;Natural Hazards and Earth System Sciences;2023-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3