Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices

Author:

Drachal Krzysztof

Abstract

Forecasting commodities prices on vividly changing markets is a hard problem to tackle. However, being able to determine important price predictors in a time-varying setting is crucial for sustainability initiatives. For example, the 2000s commodities boom gave rise to questioning whether commodities markets become over-financialized. In case of agricultural commodities, it was questioned if the speculative pressures increase food prices. Recently, some newly proposed Bayesian model combination scheme has been proposed, i.e., Dynamic Model Averaging (DMA). This method has already been applied with success in certain markets. It joins together uncertainty about the model and explanatory variables and a time-varying parameters approach. It can also capture structural breaks and respond to market disturbances. Secondly, it can deal with numerous explanatory variables in a data-rich environment. Similarly, like Bayesian Model Averaging (BMA), Dynamic Model Averaging (DMA), Dynamic Model Selection (DMS) and Median Probability Model (MED) start from Time-Varying Parameters’ (TVP) regressions. All of these methods were applied to 69 spot commodities prices. The period between Dec 1983 and Oct 2017 was analysed. In approximately 80% of cases, according to the Diebold–Mariano test, DMA produced statistically significant more accurate forecast than benchmark forecasts (like the naive method or ARIMA). Moreover, amongst all the considered model types, DMA was in 22% of cases the most accurate one (significantly). MED was most often minimising the forecast errors (28%). However, in the text, it is clarified that this was due to some specific initial parameters setting. The second ”best” model type was MED, meaning that, in the case of model selection, relying on the highest posterior probability is not always preferable.

Funder

Narodowym Centrum Nauki

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3