Multiple Types of Plug-In Charging Facilities’ Location-Routing Problem with Time Windows for Mobile Charging Vehicles

Author:

Cui Shaohua,Zhao HuiORCID,Zhang Cuiping

Abstract

Increasing attention is being paid to the technology of battery electric vehicles (BEVs) because of their environmental friendliness. However, their short range, extended recharging times, and insufficient charging facilities hinder the improvement in the market share of BEVs. As a remedy, this paper presents a novel approach to providing a service for the battery charge replenishment of BEVs. Instead of using traditional alternative methods by only providing a charging service in a fixed location, such as battery-swapping and charging lanes, the novel charge replenishment is provided by mobile charging vehicles (MCVs), which could offer a charging service at any time and at location requested. To consider the limited running range and the opportunity to recharge from MCVs, as well as to determine the location strategy of multiple types of plug-in charging facility locations and the routing plan of the MCVs simultaneously, the location routing problem (LRP) that can integrate two decision levels, with a strategic level (location) and tactical level (routing), is applied. Then, we present the multiple types of plug-in charging facilities’ location-routing problem with time windows for mobile charging vehicles (MTPCF-LRPwTW-MCVs), and formulate the MTPCF-LRPwTW-MCVs as a mixed integer linear program for the convenience of solving. To demonstrate the model, test instances are designed and computational results are presented. Furthermore, sensitivity analyses on battery capacity, recharging rate, and so on, are also examined. The results show that with the increase of the battery capacity or the improvement of the charging rate of the charging facilities, the service efficiency of the MCVs can reasonably be improved. Therefore, the proposed method could be used in real world problems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3