Analysis of Current Situation, Demand and Development Trend of Casting Grinding Technology

Author:

Liang Haigang,Qiao Jinwei

Abstract

Although grinding is essential in the production of castings, the casting grinding process in manufacturing is complicated and there are many difficulties, such as the large amount of noise in the grinding environment, non-structural casting entities, and the inclination in the overall shape–time variation. Even in the face of complex technology and a variety of difficulties, modern casting grinding technology still demands large-batch production, low cost, fast response, thin brittleness, high precision, etc. The grinding process has a long history. This paper focus on its development from a human-operated, mechanical job, to an automatic grinding task based on compliant control theory. However, the methods mentioned above can no longer satisfy the current production need. In recent years, researchers have proposed intelligent grinding methods to meet the needs of modern casting production, and provided various strategies and alternatives to the challenges of machining accuracy, machining efficiency, and surface consistency. The research direction of casting polishing has mainly focused on online robot detection, material removal prediction, constant grinding contact force control, and high-precision matching. Although applications for online detection and constant grinding contact force control exist in industry, there are challenges in material removal prediction and three-dimensional high-precision matching. This paper also compares and analyzes the advantages and disadvantages of different grinding methods, and puts forward some research directions for future work, so as to promote more intelligent and efficient grinding of complex castings in practical application.

Funder

Key Research and Development Plan of Shandong Province

Industry-University-Research Collaborative Innovation Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Abrasion Robotic Solutions: A review;International Journal of Precision Engineering and Manufacturing-Green Technology;2024-09-06

2. Implementation of an Automatic Polishing Process with a Conveyor Mechanism;Applied Mechanics and Materials;2024-03-05

3. Robotic grinding based on point cloud data: developments, applications, challenges, and key technologies;The International Journal of Advanced Manufacturing Technology;2024-02-15

4. Research on Point Cloud Processing and Grinding Trajectory Planning of Steel Helmet Based on 3D Scanner;IEEE Access;2024

5. Robustness Increase of a Ceramics Finishing Prototype: Towards Meeting Industry Requisites;Lecture Notes in Educational Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3