Abstract
Capacitive micromachined ultrasonic transducers (CMUT) are MEMS-based transducers with advantages over conventional ultrasonic transducers, such as their small size, the ease of integration with semiconductor electronics, and batch fabrication. In this study, the effect of different membrane topologies on the displacement, resonant frequency, and output pressure of the CMUT membrane is investigated in the transmission mode in an air environment. A novel structural-support feature, the rocker stem, is introduced, where the membrane is weakly held to the substrate in order to minimize mechanical constraints. Four different CMUT topologies are designed and assessed to analyze the impacts of topological variations. A new CMUT array configuration is also designed to provide an approach for maximizing CMUT density. This study aims to contribute to efficient CMUT design and the determination of optimum structural parameters for portable applications in air.
Funder
Natural Sciences and Engineering Research Council
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献