Abstract
Ratios of equilibrium solubilities rarely exceed two-fold for polymorph pairs. A model has been developed based on two intrinsic properties of polymorph pairs, namely the ratio of equilibrium solubilities of the individual pairs (C*me/C*st) and the ratio of interfacial energies (γst/γme) and one applied experimental condition, namely the supersaturation identifies which one of a pair of polymorphs nucleates first. A domain diagram has been developed, which identifies the point where the critical free energy of nucleation for the polymorph pair are identical. Essentially, for a system supersaturated with respect to both polymorphs, the model identifies that low supersaturation with respect to the stable polymorph (Sst) leads to an extremely small supersaturation with respect to the metastable polymorph (Sme), radically driving up the critical free energy with respect to the metastable polymorph. Generally, high supersaturations sometimes much higher than the upper limit of the metastable zone, are required to kinetically favour the metastable polymorph.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献