Abstract
Two pyrene derivatives having the perylenediimide (1) or the alky chain (2) in the middle of molecules were synthesized. Co-assembled supramolecular gels were prepared at different molar ratios of 0.2, 0.5, and 0.8 equiv. of 2 to 1. By SEM observation, the morphology of co-assembled supramolecular gels changed from spherical nanoparticles to three-dimensional network nanofibers as the ratio of 2 increased. In addition, the pyrene-excimer emission of co-assembled gels increased with increasing concentration of 2, and was stronger when compared with the condition without 1 or 2, indicating the formation of pyrene interaction between 1 and 2. In addition, the sol-gel transition was found to be reversible over repeated measurement by tube inversion method. The rheological properties of co-assembled supramolecular gels were also improved by increasing the ratio of 2, due to the increased nanoscale flexibility of supramolecular packing by introducing alkyl chain groups through heterogeneous pyrene interaction. These findings suggest that macroscale mechanical strength of co-assembled supramolecular gel was strongly influenced by nanoscale flexibility of the supramolecular packing.
Funder
National Research Foundation of Korea
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献