Mechanisms and Operational Strategies of Multi-Lateral Steam-Assisted Gravity Drainage (SAGD) for Heterogeneous Reservoirs

Author:

Luo Chihui1,Wu Yongbin2,He Wanjun1,Gao Yu1,Liu Jia1

Affiliation:

1. Research Institute of Exploration and Development, Xinjiang Oilfield Company, PetroChina, Karamay 834000, China

2. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

Abstract

As the SAGD steam chamber and production performance in heavy oil reservoirs under fluvial sedimentation environment are heavily impacted by reservoir heterogeneity, an innovative strategy was proposed in this study coupling rock dilation and multi-lateral wells in SAGD projects to break the mud barriers and achieve uniform steam chamber growth. True tri-axial experiments and numerical simulation were designed to validate the feasibility of this strategy, based on which the branches of the SAGD well pairs were designed and the operational parameters were optimized for different geologic heterogeneity conditions. The tri-axial experiment results indicate that the rock formations in the heavy oil reservoirs of the F oilfield exhibit significant shear dilation effects under low confinement pressure conditions, with a volumetric dilation capacity of up to 7%. The branches should be deployed in an interleaved manner, with a horizontal displacement of 20 m and a vertical displacement of 6 m. The optimal results are achieved when the branches intersect the interbeds, allowing for enhanced steam chamber conformance and enlarged volume. Dilation zones of 3–8 m can be created above the steam-injection horizontal wells and around the branches in the reservoir during the dilation of SAGD steam chambers. The maximum volume of dilation fluid used for hydraulic dilation is suggested to be less than 2000 m3. This strategy has been validated as being successful in the pilot SAGD well pair in the F oilfield, China, with the SAGD preheating time reduced by 50% and an incremental oil rate of 4.5 tones/day, indicating encouraging potentials in similar heavy oil reservoirs.

Funder

China National Key Project

Science and Technology Project of CNPC

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3