Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach

Author:

Murshed Mahtab1ORCID,Chamana Manohar2ORCID,Schmitt Konrad Erich Kork1ORCID,Pol Suhas2,Adeyanju Olatunji2ORCID,Bayne Stephen1

Affiliation:

1. Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA

2. Renewable Energy Program, Texas Tech University, Lubbock, TX 79409, USA

Abstract

This article presents a comprehensive data-driven approach on enhancing grid-connected microgrid grid resilience through advanced forecasting and optimization techniques in the context of power outages. Power outages pose significant challenges to modern societies, affecting various sectors such as industries, households, and critical infrastructures. The research combines statistical analysis, machine-learning algorithms, and optimization methods to address this issue to develop a holistic approach for predicting and mitigating power outage events. The proposed methodology involves the use of Monte Carlo simulations in MATLAB for future outage prediction, training a Long Short-Term Memory (LSTM) network for forecasting solar irradiance and load profiles with a dataset spanning from 2009 to 2018, and a hybrid LSTM-Particle Swarm Optimization (PSO) model to improve accuracy. Furthermore, the role of battery state of charge (SoC) in enhancing system resilience is explored. The study also assesses the techno-economic advantages of a grid-tied microgrid integrated with solar panels and batteries over conventional grid systems. The proposed methodology and optimization process demonstrate their versatility and applicability to a wide range of microgrid design scenarios comprising solar PV and battery energy storage systems (BESS), making them a valuable resource for enhancing grid resilience and economic efficiency across diverse settings. The results highlight the potential of the proposed approach in strengthening grid resilience by improving autonomy, reducing downtime by 25%, and fostering sustainable energy utilization by 82%.

Funder

United States Department of Defense

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3