Study on Improving the Energy Efficiency of a Building: Utilization of Daylight through Solar Film Sheets

Author:

Alzarooni Mohamed1,Olabi Abdul Ghani12,Mahmoud Montaser1ORCID,Alzubaidi Safaa3,Abdelkareem Mohammad Ali14ORCID

Affiliation:

1. Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

2. Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK

3. Professional and Technical Services, Toronto, ON M2N 6A6, Canada

4. Chemical Engineering Department, Minia University, Elminia 61519, Egypt

Abstract

Daylight can contribute to substantial reductions in the energy consumed by artificial lighting applications. However, issues such as visual comfort, illumination intensity, and availability represent major issues when daylight is relied upon to illuminate buildings. There are many technologies that are used to control received sunlight and minimize its side effects. The placement of solar film sheets on window glass is a common and popular method utilized in many buildings to minimize electric lighting energy consumption without causing undue visual discomfort to occupants. To examine the practicality of this application and its effect on room lighting, a modern office was selected in which to conduct this field study. Two measures were used to evaluate this technique: firstly, field measurements and their comparison to the specified standard illumination levels; and secondly, a short-form questionnaire survey conducted to obtain occupants’ opinions of the office lighting. Actual measurements were conducted in the selected office spaces, with and without applying solar control film coating on the window glass. Indoor luminance levels and lighting comfort were systematically recorded and analyzed. The findings of this study show that using a solar film with a visible light transmittance of 50% can achieve savings in energy consumption of up to 33% if utilized as part of an integrated lighting system.

Funder

University of Sharjah

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3