Prediction of Dynamic Temperature and Thermal Front in a Multi-Aquifer Thermal Energy Storage System with Reinjection

Author:

Huang Guoshu1,Liu Liang1ORCID,Mu Mangen1,Yang Jian2,Ding Hui1

Affiliation:

1. The Cultivation Base of Shanxi Key Laboratory of Mining Area Ecological Restoration and Solid Wastes Utilization, Shanxi Institute of Technology, Yangquan 045000, China

2. Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of Geosciences, Wuhan 430000, China

Abstract

The accurate temperature and thermal front prediction in aquifer thermal energy storage systems during reinjection are crucial for optimal management and sustainable utilization. In this paper, a novel two-way fully coupled thermo–hydro model was developed to investigate the dynamic thermal performance and fronts for multiple aquifer thermal energy storage systems. The model was validated using a typical model, and the evolution characteristics of wellbore temperature before and after the breakthrough of the hydraulic front and thermal front were deeply studied. Sensitivity analysis was conducted to delineate the influence of various reservoir and reinjection factors on the thermal extraction temperature (TET). The results revealed that thermal conductivity significantly impacts the thermal extraction rate among the various reservoir factors. In contrast, volumetric heat capacity has the weakest influence and negatively correlates with the TET. Concerning the reinjection factors, the effect of the reinjection volume rate on the TET was significantly more significant than the reinjection temperature. Furthermore, the correlation between the TET and different properties was observed to be seriously affected by the exploitation period. The coupled model presented in this study offers insight into designing the exploitation scheme in deep reservoirs and geothermal resources.

Funder

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

the Natural Science Foundation of Shanxi Province

Shanxi Institute of Technology Research Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3