Low-Cost Distributed Thermal Response Test for the Estimation of Thermal Ground and Grout Conductivities in Geothermal Heat Pump Applications

Author:

Priarone Antonella1,Morchio Stefano1,Fossa Marco1ORCID,Memme Samuele1ORCID

Affiliation:

1. Dime Department of Mechanical, Energy, Management and Transportation Engineering, The University of Genova, Via Opera Pia 15, 16145 Genova, Italy

Abstract

The design process of a borehole heat exchanger (BHE) requires knowledge of building thermal loads, the expected heat pump’s COP and the ground’s thermophysical properties. The thermal response test (TRT) is a common experimental technique for estimating the ground’s thermal conductivity and borehole thermal resistance. In classic TRT, a constant heat transfer rate is provided above ground to the carrier fluid that circulates continuously inside a pilot BHE. The average fluid temperature is measured, and from its time-dependent evolution, it is possible to infer both the thermal resistance of the BHE and the thermal conductivity of the ground. The present paper investigates the possibility of a new approach for TRT with the continuous injection of heat directly into the BHE’s grouting by means of electrical resistance imparted along the entire BHE’s length, while local (along the depth) temperature measurements are acquired. This DTRT (distributed TRT) approach has seldom been applied and, in most applications, circulating hot fluid and optical fibers are used to infer depth-related temperatures. The distributed measurements allow the detection of thermal ground anomalies along the heat exchanger and even the presence of aquifer layers. The present paper investigates the new EDDTRT (electric depth-distributed TRT, under patenting) approach based on traditional instruments (e.g., RTD) or one-wire digital sensors. The accuracy of the proposed method is numerically assessed by Comsol Multiphysics simulations. The analysis of the data obtained from the “virtual” EDDTRT confirms the possibility of estimating within 10% accuracy both thermal ground and grout conductivities.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference45 articles.

1. IEA (2020). Heat Pumps, IEA. Available online: https://www.iea.org/reports/heat-pumps.

2. An investigation on the environmental impact of various Ground Heat Ex-changers configurations;Aresti;Renew. Energy,2021

3. Greenhouse gas emission savings of ground source heat pump systems in Europe: A review;Bayer;Renew. Sustain. Energy Rev.,2012

4. Thermal response testing for ground source heat pump systems—An historical review;Spitler;Renew. Sustain. Energy Rev.,2015

5. Advanced thermal response tests: A review;Wilke;Renew. Sustain. Energy Rev.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3