Numerical Study on Cavitating Flow-Induced Pressure Fluctuations in a Gerotor Pump

Author:

Zhou Peijian123,Cui Jiayi2,Xiao Gang12ORCID,Xiang Chun4,Dai Jiacheng1,Zheng Shuihua1ORCID

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

3. Engineering Research Center of High-efficiency and Energy-saving Large Axial Flow Pumping Station, Yangzhou University, Yangzhou 225009, China

4. School of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

Abstract

Using the RNG k-ε turbulence model and a full cavitation model, this study numerically simulated cavitating flow-induced pressure fluctuations in a gerotor pump and analyzed the relationship between cavitating flow and pressure fluctuations. The results demonstrate that, as the inlet pressure decreases, the cavitation phenomenon in the gerotor pump intensifies, and the cavitation range in the rotor increases. Some of the vapor even spreads into the oil inlet groove, leading to high vapor content in the chamber that is in contact with the oil inlet groove. The pressure fluctuation characteristics of the flow field in the pump exhibit evident periodic changes. Under different cavitation conditions, the pressure fluctuation amplitude at the monitoring point decreases with increasing inlet pressure, whereas the main frequency of pressure fluctuation remains unaffected by cavitation conditions. The pressure fluctuation amplitude is the strongest at point O1 of demarcation between the low-pressure and high-pressure zones in the chamber, and the volume between the oil inlet groove and the oil outlet groove serves as the main vibration source in the rotor pump. To ensure the stable and efficient operation of the gerotor pump, it is recommended to operate it at a larger NPSH.

Funder

the China Postdoctoral Science Foundation

the Open Project Program of Engineering Research Center of High-efficiency and Energy-saving Large Axial Flow Pumping Station, Jiangsu Province, Yangzhou University

Zhejiang Provincial Science and Technology Plan Project of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3