Power Density Increase in Permanent-Magnet Synchronous Machines Considering Active Thermal Control

Author:

Monissen Christian1ORCID,Kusche Oliver1ORCID,Schröder Michael2ORCID,Andert Jakob1ORCID

Affiliation:

1. Teaching and Research Area Mechatronics in Mobile Propulsion, Faculty of Mechanical Engineering, RWTH Aachen University, Forckenbeckstraße 4, D-52074 Aachen, Germany

2. FEV Europe GmbH, Neuenhofstr. 181, D-52078 Aachen, Germany

Abstract

The power density of electric machines for future battery electric vehicles must be further increased to improve customer benefits. To this end, this paper compares two state-of-the art electrical traction machines and evaluates the potential for increasing the power density using a third, novel high-speed machine design. The analysis is performed using an electromagnetic finite element analysis, a thermal network with lumped parameters, and a coupled electromagnetic–thermal simulation. The simulations of the three machines evaluate the potential for increasing the power density and overload margins, as well as reducing material consumption. With regard to the active thermal control, the new design aims for reduced thermal capacities and increased loss density to optimize the thermal controllablity and overall performance. The thermal active control is analyzed in thermal transient simulations and electromagnetic simulations with different magnet temperatures. The results show that higher magnet temperatures benefit efficiency and reduce losses for low torque at high speeds. However, a colder magnet is needed for maximum torque at base speed. A maximum loss reduction of 24% is achieved with a 100 °C magnet-temperature difference at maximum speed and low torque.

Funder

European Union

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference41 articles.

1. Krings, A., and Monissen, C. (2020, January 23–26). Review and Trends in Electric Traction Motors for Battery Electric and Hybrid Vehicles. Proceedings of the 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden.

2. Specht, A. (2014). Ermittlung der Rotortemperatur einer Synchronmaschine mit Eingebetteten Permanentmagneten für Einen Automobilen Traktionsantrieb Mittels Beobachter Basierend auf Elektrischen Größen. [Ph.D. Thesis, Universität Paderborn]. Available online: https://d-nb.info/106464712X/34.

3. Kleschinski, M. (2007). Antriebswellen aus Faser-Kunststoff-Verbunden: Auslegung und Optimierung unter Berücksichtigung des ermüdungsbedingten Torsionsbeulens, Shaker. Schriftenreihe Konstruktiver Leichtbau mit Faser-Kunststoff-Verbunden.

4. (2021, August 20). Neuartige Kühlung ermöGlicht Einen Elektromotor aus Kunststoff—ingenieur.de. ingenieur.de—Jobbörse und Nachrichtenportal für Ingenieure. Available online: https://www.ingenieur.de/technik/fachbereiche/e-mobilitaet/neuartige-kuehlung-ermoeglicht-einen-elektromotor-aus-kunststoff/.

5. Clifford, J. (2021, July 20). History of the Toyota Prius. Available online: https://mag.toyota.co.uk/history-toyota-prius/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3