A Polynomial Synthesis Approach to Design and Control an LCL-Filter-Based PWM Rectifier with Extended Functions Validated by SIL Simulations

Author:

Viera Díaz Rosa Iris1ORCID,Nuñez Ciro1ORCID,Visairo Cruz Nancy1ORCID,Segundo Ramírez Juan1ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico

Abstract

Controlling a PWM rectifier can be challenging due to the bilinear nature of its averaged model. This paper introduces the use of the Butterworth approach to design and control an LCL-filter-based PWM rectifier with power quality functions. By leveraging the linear part of the system, this approach reduces the number of variables involved in the control scheme. The rectifier is designed and controlled in a concatenated manner to ensure proper performance even during demanding power-quality events. The uniqueness of this approach lies in the fact that a fourth-order model can be regulated by using solely three-state variables and linear techniques founded on Butterworth polynomial synthesis. This approach differs from previous methods in that it does not employ nonlinear controllers, dq transformations, or double control loops. Hence, this divergent approach contributes to the simplification of power converter design and control through the application of the same polynomial synthesis, besides enhancing system operation in demanding scenarios. Extensive SIL simulations of a 1 kW, 220 Vrms PWM rectifier using the OPAL-RT-1400 platform were conducted to demonstrate the feasibility of the proposed controller. The selected tests reveal the validity of this proposal even when the PWM rectifier faces multiple power quality events simultaneously.

Funder

Consejo Nacional de Humanidades Ciencia y Tecnología

FORDECYT PRONACES

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3