Adaptability to Enhance Heavy Oil Recovery by Combination and Foam Systems with Fine-Emulsification Properties

Author:

Ding Mingchen123,Liu Ping12,Wang Yefei3,Zhang Zhenyu3,Dong Jiangyang3,Duan Yingying3

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China

2. Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration, Beijing 100083, China

3. Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China

Abstract

Emulsification is increasingly emphasized for heavy oil recovery through chemical flooding. However, whether systems with fine-emulsification (FE) properties significantly outperform conventional ultra-low interfacial tension (IFT) systems, especially under varying water-oil viscosity ratios, remains unclear. In this research, two FE systems and one conventional ultra-low IFT system are compared in terms of their IFTs, emulsification properties, foaming behaviors, and heavy oil recovery (in the form of combination flooding and foam flooding). The results show that FE systems 1# and 2# can generate more stable emulsions of heavy oil than the traditional ultra-low IFT variant 3#. During the first combination flooding, FE systems recover 24.5% and 27.9% of the oil after water, obviously surpassing 21.0% of the ultra-low IFT system 3#; but as this ratio increases to 0.45, those factors become very similar to ones of 33.2%, 34.5% and 32.9%, with the former no longer outperforming the latter. In the second trials of foam flooding, at a lower water-oil viscosity ratio of 0.05, FE foam 1# becomes less effective than the ultra-low IFT 3#, with oil recovery factors of 27.2% and 31.6%, respectively; but foam 2# (combining medium emulsification and ultra-low IFT) remains optimal, with the highest recovery factor of 40.0%. Again, as this ratio becomes 0.45, the advantages of FE systems over the ultra-low IFT system are almost negligible, generating similar oil recoveries of 39.2%, 41.0% and 39.4%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3