Temperature Field and Performance Analysis of Brush Seals Based on FEA-CFD and the Porous Medium of Anisotropic Heat Transfer Models

Author:

Song Xiaolei1,Liu Meihong1,Sun Junfeng1,Wang Juan1,Wang Kun1

Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China

Abstract

A brush seal is a type of contact sealing technology that generates a great amount of heat during operations. The heat can affect the seal’s performance and lifespan. To study the brush seals’ temperature distribution, a new model considering the anisotropic heat transfer effect is established in this paper. The friction heat effect at the bristles’ tip is studied. The temperature field and leakage rates are obtained by using combined finite element analysis (FEA)-computational fluid dynamics (CFD) analysis and the anisotropic heat transfer theory. The influence of operating and structural parameters on the temperature field and the sealing properties of the brush seal are investigated. It is shown that the value of the rotation rate and the interference can cause the temperature of the brush seal to increase. The pressure difference enhances the convective heat transfer from the brush seals. While the temperature at the bristles’ tip increases, the radial average temperature of the bristles decreases significantly. In the case of a small pressure difference, the fence’s height can increase the windward area, leading to stiff bristles and resulting in a temperature increase at the bristles’ tip; however, the effective flow area increases, resulting in an acceleration of the radial temperature’s decrease. To summarize, the porous medium model of anisotropic heat transfer provides a new method for studying brush seals, and it can reflect the temperature distribution and leakage performance of brush seals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3