Glycine Dissolution Behavior under Forced Convection

Author:

Eder Cornelia1,Schiele Simon A.1ORCID,Luxenburger Frederik1ORCID,Briesen Heiko1ORCID

Affiliation:

1. Chair of Process Systems Engineering, Technical University of Munich, 85354 Freising, Germany

Abstract

The integration of a flow-through cell into a Mach–Zehnder interferometer offers the possibility to study the dissolution of crystals in detail. The influence of flow on the displacement velocity of a specific crystal facet and the distribution of the solute concentration around the crystal are measured simultaneously in a time-resolved manner. The disintegration from the crystal surface and the mass transfer into the solvent can be separated. We aim to establish an in vitro experiment that improves the quality of prediction for the bioavailability of active pharmaceutical ingredients. In the presented feasibility study, glycine was used as a model substance. It was successfully demonstrated that the set-up is suitable for observing disintegration and mass transfer separately. The description of the dissolution rate in terms of the Sherwood number as a function of Reynolds, Schmidt and Grashof numbers clearly shows that with increasing flow rate there is a transition from natural to forced convection as the dominant mass transfer mechanism. Temporal and spatial resolved concentration fields visualize the convective mass transfer and also show the influence of convection on the diffusive boundary layer. No limitation of the dissolution by surface disintegration could be found in the examined range of flow rates.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference50 articles.

1. Benchmarking biopharmaceutical process development and manufacturing cost contributions to R&D;Farid;MAbs,2020

2. R&D costs of new medicines: A landscape analysis;Simoens;Front. Med.,2021

3. Advances in oral drug delivery;Alqahtani;Front. Pharmacol.,2021

4. New forms of old drugs: Improving without changing;Domingos;J. Pharm. Pharmacol.,2015

5. Dissolution and dissolution apparatus: A review;Uddin;Int. J. Curr. Biomed. Pharm. Res.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3