Analysis of Crystalline Defects Caused by Growth on Partially Planarized Spalled (100) GaAs Substrates

Author:

Boyer Jacob T.1ORCID,Braun Anna K.2,Schulte Kevin L.1,Simon John1ORCID,Johnston Steven W.1ORCID,Guthrey Harvey L.1,Steiner Myles A.1,Packard Corinne E.12ORCID,Ptak Aaron J.1

Affiliation:

1. National Renewable Energy Laboratory, Golden, CO 80211, USA

2. Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA

Abstract

We analyze the effect of growth on non-(100) surfaces resulting from incomplete planarization of spalled GaAs wafers on the defect structure of GaAs solar cell layers grown by hydride vapor phase epitaxy (HVPE). Controlled spalling of (100)-oriented GaAs has the potential to reduce substrate costs for III-V epitaxy; however, it creates regularly faceted surfaces that may complicate the growth of high-quality III-V optoelectronic devices. We leverage the anisotropic growth rate of HVPE to planarize these faceted GaAs substrates, reducing the surface roughness and degree of faceting. We observe degraded solar cell performance and material quality in sample areas where facets are not completely removed. We used dark lock-in thermography and photoluminescence to identify recombination in areas that were not fully planarized. We used cathodoluminescence to identify the presence of extended defects in these regions, which are correlated with bandgap fluctuations in the material. We hypothesize that these defects were created by strain from compositional fluctuations in ternary alloys grown on the faceted surfaces. This work elucidates the potential issues of solar cells grown on faceted surfaces and builds understanding toward realizing high performance III-V photovoltaics with the cost-reduction potential of controlled spalling.

Funder

DOE’s Office of Energy Efficiency and Renewable Energy

National Renewable Energy Laboratory

National Science Foundation Graduate Research Fellowship Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3