The Influence of BaTiO3 Content on the Energy Storage Properties of Bi0.5Na0.5TiO3-Bi(Mg2/3Nb1/3)O3 Lead-Free Ceramics

Author:

Li Zhuo12,Zhang Dandan1,Wang Chenbo1,Zhang Jiayong1,Wang Zixuan1,Wang Zhuo12,Yan Xin12,Ai Tao12ORCID,Wang Dawei3ORCID,Lu Zhilun4ORCID,Niu Yanhui12

Affiliation:

1. School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China

2. Engineering Research Center of Transportation Materials of Ministry of Education, Chang’an University, Xi’an 710061, China

3. Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China

4. School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK

Abstract

Na0.5Bi0.5TiO3 (NBT)-based ceramics are promising lead-free candidates for energy-storage applications due to their outstanding dielectric and ferroelectric properties derived from large polarization. However, the high coercive field and large remnant polarization are unfavorable for practical applications, and thus NBT-based ceramics with relaxation behavior via doping/forming solid solutions with other elements/components have been widely studied. In this work, BaTiO3 (BT) was introduced to the 0.94Na0.5Bi0.5TiO3-0.06Bi(Mg2/3Nb1/3)O3 system by a conventional solid-state reaction to form a homogeneous solid solution of 0.94[(1−x)Na0.5Bi0.51TiO3-xBaTiO3]-0.06Bi(Mg2/3Nb1/3)O3 (BNT-100xBT-BMN). As the BT content increased, the proportion of the rhombohedral R3c phase increased while that of the tetragonal P4bm phase decreased, leading to the maximum Pmax (38.29 μC/cm2) and Eb (80 kV/cm) obtained in BNT-7BT-BMN (x = 0.07) composition. Specifically, the optimal energy storage properties of Wrec ~ 1.02 J/cm3 and η ~ 62.91% under 80 kV/cm were obtained in BNT-7BT-BMN ceramics, along with good temperature stability up to 200 °C, which are promising factors for future pulse power applications.

Funder

National Natural Science Foundations of China

Natural Science Foundation of Shaanxi province, China

Fundamental Research Funds for the Central Universities, CHD

Key Research and Development Projects of Shaanxi Province

Undergraduate Training Programs for Innovation and Entrepreneurship of Chang’an University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3