Role of Non-Covalent Interactions in Novel Supramolecular Compound, Bis(4-phenylpiperazin-1-ium) Oxalate Dihydrate: Synthesis, Molecular Structure, Thermal Characterization, Spectroscopic Properties and Quantum Chemical Study

Author:

Jemai Mahdi1,Khalfi Marwa1,Issaoui Noureddine2ORCID,Roisnel Thierry3ORCID,Kazachenko Aleksandr S.45,Al-Dossary Omar6ORCID,Marouani Houda1ORCID,Kazachenko Anna S.45,Malyar Yuriy N.45ORCID

Affiliation:

1. University of Carthage, Faculty of Sciences of Bizerte, LR13ES08 Material Chemistry Laboratory, Bizerte 7021, Tunisia

2. Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia

3. Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, F-35000 Rennes, France

4. Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia

5. Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, bld.24, Krasnoyarsk 660036, Russia

6. Departement of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

The stoichiometric ratio 2:1 mix of 1-phenylpiperazine and oxalic acid dihydrate followed by slow evaporation results in a new material, bis(4-phenylpiperazin-1-ium) oxalate dihydrate, with the general chemical formula (C10H15N2)2(C2O4).2H2O, indicated by PPOXH. The title compound’s asymmetric unit and three-dimensional network have been determined by single crystal X-ray diffraction. Intermolecular O-H…O, N-H…O and C-H…O hydrogen bonding assist in maintaining and stabilization of the crystal structure of this new compound. Hirshfeld surface analysis and two-dimensional fingerprints have been performed to quantify the non-covalent interactions in the PPOXH structure. The vibrational modes of the different characteristic groups of the title chemical were identified using infrared spectrum analysis. The thermal characterization of this product was studied by a coupled TG/DTA analysis. The ultraviolet-visible absorption spectrum has been used to study the optical properties and the energy gap of this compound. DFT calculations were employed to evaluate the composition and properties of PPOXH. The analysis of HOMO-LUMO frontier orbitals analysis allows us to understand the chemical reactivity of this supramolecular compound and to determine the electrophilic and nucleophilic sites responsible for electron transfer. Topological analysis (AIM), reduced density gradient (RDG), molecular electrostatic potential surface (MEPS) and Mulliken population were analyzed to evaluate the types of non-covalent interactions, localization of electrons in space, atomic charges and molecular polarity in depth.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3