Tumor Microenvironment Activated Vanadium−Doped Carbon Dots for Fluorescence Imaging and Chemodynamic Therapy

Author:

Nie Renhao12,Jia Qingyan12,Li Yunqi3

Affiliation:

1. Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China

2. Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China

3. Department of Gastroenterology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China

Abstract

The multifunctional platform response to the tumor microenvironment (TME) is critical for the high-precision diagnosis and treatment of cancer with low systemic toxicity. In this regard, vanadium-doped carbon dots (V−CDs) have been developed for TME-activated fluorescence imaging and chemodynamic therapy (CDT). Due to the Forster resonance energy transfer caused by the doped vanadium, the obtained V−CDs displayed quenched fluorescence. Once entering the tumor, the fluorescence imaging ability of the V−CDs are stimulated by the reaction between vanadium and overexpressed H2O2 in a weak acid TME. Meanwhile, the hydroxyl radicals generated by the catalytic reaction of V−CDs could induce oxidative damage in tumor cells for CDT, while showing less cytotoxicity and side effects in normal cells. Therefore, the well-designed V−CDs could be used for TME-activated fluorescence imaging and CDT while maintaining an “inactive” status in normal tissues to ensure low biological toxicity, satisfying the clinical requirements for accurate diagnosis and efficient treatment with low side effects for tumors. Our research provides an effective strategy for designing and preparing multifunctional nanotheranostic drugs responsive to TME for accurate tumor imaging and treatment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3