NO2 Adsorption Sensitivity Adjustment of As/Sb Lateral Heterojunctions through Strain: First Principles Calculations

Author:

Yang Li1,Wang Dengkui1,Fang Dan1,Yan Hao1,Zhai Yingjiao1,Chu Xueying1,Li Jinhua1,Fang Xuan1ORCID

Affiliation:

1. State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, 7089 Wei-Xing Road, Changchun 130022, China

Abstract

Strain engineering is an effective way to adjust the sensing properties of two-dimensional materials. In this paper, lateral heterojunctions (LHSs) based on arsenic and antimony have been designed along the armchair (AC) or zigzag (ZZ) edges. The adsorption and sensing characteristics of As/Sb LHSs to NO2 before and after applying different types of strain are calculated by first principles. The band gaps of all As/Sb heterostructures are contributed by As-p and Sb-p orbitals. In addition, the adsorption energy of As/Sb ZZ-LHS with −4% compression strain is the largest. Furthermore, its work function changes significantly before and after the adsorption of NO2. Meanwhile, strong orbital hybridizations near the Fermi level are observed and a new state is yielded after applying compressive strain. These results indicate that the As/Sb LHS with ZZ interface under −4% compression strain possesses the best sensing properties to NO2. This work lays the foundation for the fabrication of high-performance NO2 gas sensors. High-performance gas sensors can be used to track and regulate NO2 exposure and emission, as well as to track NO2 concentrations in the atmosphere and support the assessment of air quality.

Funder

National Natural Science Foundation of China

Developing Project of Science and Technology of Jilin Province

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3