Preparation and Characterization of Nano-Sized Co(II), Cu(II), Mn(II) and Ni(II) Coordination PAA/Alginate Biopolymers and Study of Their Biological and Anticancer Performance

Author:

Al-Fakeh Maged S.12ORCID,Alazmi Munirah S.1,EL-Ghoul Yassine13

Affiliation:

1. Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia

2. Taiz University, Taiz 3086, Yemen

3. Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia

Abstract

Four of the crosslinked sodium alginate and polyacrylic acid biopolymers based nanoscale metal natural polysaccharides, [M(AG-PAA)Cl(H2O)3], where M = Co(II), Cu(II), Mn(II) and Ni(II), AG = sodium alginate and PAA = polyacrylic acid, have been synthesized and structurally characterized. Because of their numerous biological and pharmacological activities of polysaccharides, including antimicrobial, immunomodulatory, antitumor, antidiabetic, antiviral, antioxidant, hypoglycemic and anticoagulant activities, polysaccharides are one of the near-promising candidates in the biomedical and pharmaceutical fields. The complexity of the polymeric compounds has been verified by carbon and nitrogen analysis, magnetic and conductance measurements, FT-IR spectra, electronic spectral analysis and thermal analysis (DTA, TG). All the synthesized complexes were non-electrolytes with magnetic moments ranging from 1.74 to 5.94 BM. The polymeric complexes were found to be of octahedral geometry. The developed coordination polymeric was found to be crystalline using X-ray powder diffraction examinations, which is confirmed by the SEM analysis. As a result, the crystallite size of all polymeric nanocrystals was in the range of 14 - 69 nm. The test of four compounds exhibits a broad spectrum of antimicrobial activity against both Gram-positive and Gram-negative bacteria and fungal Candida albicans. Using DPPH as a substrate, studies on radical scavenging tests are carried out. The findings demonstrated the antioxidant activities of each complex. In addition, results showed that the two chosen polymeric complexes had a good ability to kill cancer cells in a dose-dependent way. The copper(II) polymeric complex showed to its superior functionality as evidenced by microbial activity. After 72 h of interaction with the normal human breast epithelial cells (MCF10A), the synthesized polymeric compounds of Cu(II) and Co(II) showed exceptional cytocompatibility with the different applied doses. Compared to poly-AG/PAA/Co(II), poly-AG/PAA/Cu(II) exhibits a greater anticancer potential at various polymeric dosages.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference62 articles.

1. Production of Biodegradable Plastic Packaging Film from Cassava Starch;Ezeoha;IOSR J. Eng.,2013

2. Biopolymers in medical implants: A brief review;Rebelo;Procedia Eng.,2017

3. A review on formulation of enzymatic solution for biopolymer hydrolysis;Bala;J. Chem.,2017

4. Smart biopolymers and their biomedical applications;Pattanashetti;Procedia Manuf.,2017

5. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review;Qasim;Environ. Chem. Lett.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3