Interface-Dominated Plasticity and Kink Bands in Metallic Nanolaminates
Author:
Affiliation:
1. Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2. Advanced Micro Devices, Inc., Austin, TX 78735, USA
3. Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Abstract
Funder
grant NSF OIA-DMR
Publisher
MDPI AG
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Link
https://www.mdpi.com/2073-4352/13/5/828/pdf
Reference47 articles.
1. Mechanical Properties of Metal Nanolaminates;Beyerlein;Annu. Rev. Mater. Res.,2022
2. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites;Mara;Appl. Phys. Lett.,2008
3. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation;Beyerlein;J. Mater. Res.,2013
4. Enhanced plasticity via kinking in cubic metallic nanolaminates;Nizolek;Adv. Eng. Mater.,2015
5. Non-local large-strain FFT-based formulation and its application to interface-dominated plasticity of nano-metallic laminates;Zecevic;J. Mech. Phys. Solids,2023
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Coupling Phase Field Crystal and Field Dislocation Mechanics for a consistent description of dislocation structure and elasticity;European Journal of Mechanics - A/Solids;2024-11
2. A hidden convexity in continuum mechanics, with application to classical, continuous-time, rate-(in)dependent plasticity;Mathematics and Mechanics of Solids;2024-07-31
3. Micromechanics of kink-band formation in bimetallic layered composites;International Journal of Solids and Structures;2024-01
4. Coupling Phase Field Crystal and Field Dislocation Mechanics for a Consistent Description of Dislocation Structure and Elasticity;2024
5. Coupling effect of strain gradient strengthening and thermal softening on the microscale plastic behavior of metallic materials;European Journal of Mechanics - A/Solids;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3