Affiliation:
1. Guangxi Key Laboratory of Wireless Wideband Communication & Signal Processing, Guilin 541004, China
Abstract
A frequency magnetically tunable perfect absorber based on graphene in the terahertz (THz) region is proposed. The performance is analysed using the 4 × 4 transfer matrix method, demonstrating that the perfect absorption frequency of the proposed absorber for a left-handed circularly polarized (LCP) wave can be dynamically tuned by varying the external static bias magnetic field in three frequency ranges (0.95–2.2 THz, 4.15–5.4 THz, and 7.3–8.55 THz). Due to the destructive interference of the reflected waves and the graphene-induced photonic band gap, the maximum absorption of the LCP wave can reach 99.91%. In addition, the proposed absorber can tolerate a wide range of incident angles for the LCP wave. This study may have great potential for various applications, such as detectors, sensors, and other optoelectronic devices in the THz region.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangxi Province
Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing
Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献