Modeling Microsegregation during Metal Additive Manufacturing: Impact of Dendrite Tip Kinetics and Finite Solute Diffusion

Author:

Hariharan V. S.1ORCID,Nithin Baler2,Ruban Raj L.1,Makineni Surendra Kumar2,Murty B. S.13,Phanikumar Gandham1ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India

2. Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India

3. Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India

Abstract

Rapid solidification during metal additive manufacturing (AM) leads to non-equilibrium microsegregation, which can result in the formation of detrimental phases and cracking. Most of the microsegregation models assume a Scheil-type solidification, where the solidification interface is planar and there exists a local equilibrium at the interface along with either zero or infinite solute diffusion in the respective participating phases—solid and liquid. This assumption leads to errors in prediction. One has to account for finite solute diffusion and the curvature at the dendritic tip for more accurate predictions. In this work, we compare different microsegregation models, that do and do not consider finite diffusion and dendrite tip kinetics, against experiments. We also propose a method to couple dendrite tip kinetics with the diffusion module (DICTRA®) implemented in Thermo-Calc®. The models which accounted for both finite diffusion and dendrite tip kinetics matched well with the experimental data.

Funder

Department of Science and Technology, Government of India

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3