Affiliation:
1. Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
2. Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
Abstract
In this study, we review our first-principles simulations for STO/BTO, STO/PTO, and SZO/PZO (001) heterostructures. Specifically, we report ab initio B3PW calculations for STO/BTO, STO/PTO, and SZO/PZO (001) interfaces, considering non-stoichiometric heterostructures in the process. Our ab initio B3PW calculations demonstrate that charge redistribution in the (001) interface region only subtly affects electronic structures. However, changes in stoichiometry result in significant shifts in band edges. The computed band gaps for the STO/BTO, STO/PTO, and SZO/PZO (001) interfaces are primarily determined according to whether the topmost layer of the augmented (001) film has an AO or BO2 termination. We predict an increase in the covalency of B-O bonds near the STO/BTO, STO/PTO, and SZO/PZO (001) heterostructures as compared to the BTO, PTO, and PZO bulk materials.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献