The Tensile Properties and Fracture Toughness of a Cast Mg-9Gd-4Y-0.5Zr Alloy

Author:

Ji Zhikang1,Qiao Xiaoguang1ORCID,Guan Shoufu1,Hou Junbin1,Hu Changyu1,Cong Fuguan2,Wang Guojun2,Zheng Mingyi1

Affiliation:

1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Northeast Light Alloy Company Limited, Harbin 150060, China

Abstract

Low fracture toughness has been a major barrier for the structural applications of cast Mg-Gd-Y-Zr alloys. In this work, the tensile properties and fracture toughness of a direct-chill-cast Mg-9Gd-4Y-0.5Zr (VW94K) alloy were investigated in different conditions, including its as-cast and as-homogenized states. The results show that the tensile properties of the as-cast VW94K alloy are greatly improved after the homogenization treatment due to the strengthening of the solid solution. The plane strain fracture toughness values KIc of the as-cast and as-homogenized VW94K alloys are 10.6 ± 0.5 and 13.8 ± 0.6 MPa·m1/2, respectively, i.e., an improvement of 30.2% in KIc is achieved via the dissolution of the Mg24(Gd, Y)5 eutectic phases. The initiation and propagation of microcracks in an interrupted fracture test are observed via an optical microscope (OM) and scanning electron microscope (SEM). The fracture surfaces of the failed samples after the fracture toughness tests are examined via an SEM. The electron backscatter diffraction (EBSD) technique is adopted to determine the failure mechanism. The results show that the microcracks are initiated and propagated across the Mg24(Gd, Y)5 eutectic compounds in the as-cast VW94K alloy. The propagation of the main cracks exhibits an intergranular fracture pattern and the whole crack propagation path displays a zigzag style. The microcracks in the as-homogenized alloy are initiated and propagated along the basal plane of the grains. The main crack in the as-homogenized alloy shows a more tortuous fracture characteristic and a trans-granular crack propagation behavior, leading to the improvement of the fracture toughness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3