In Situ Study on Cu-to-Cu Thermal Compression Bonding

Author:

Niu Tongjun1,Xu Ke2,Shen Chao2,Sun Tianyi2,Oberst Justin3,Handwerker Carol A.2,Subbarayan Ganesh4ORCID,Wang Haiyan25ORCID,Zhang Xinghang2

Affiliation:

1. Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

2. School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA

3. Lam Research Corporation, Tualatin, OR 97062, USA

4. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA

5. School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

Cu-to-Cu thermal compression bonding (TCB) has emerged as a promising solution for ultrafine pitch packaging in 3D integrated circuit technologies. Despite the progress made by conventional Cu-to-Cu TCB methods in achieving good mechanical strength of the Cu bonds, the bonding processes generally require high temperature and high pressure, which may degrade the performance and reliability of the device. Therefore, it is imperative to investigate the processing parameters to understand the bonding mechanism and achieve effective TCB at a low temperature and low pressure. Here, we developed an in situ TCB technique inside a scanning electron microscope. The in situ TCB method enables a real-time observation of bonding development, which provides critical insights into how the texture and microstructure of Cu bumps may influence the creep and surface diffusion during the bonding process. This work features a strategy to advance our understanding of the bonding mechanisms and provides insight into tailoring the microstructure of Cu for bonding at a low temperature and low pressure.

Funder

Semiconductor Research Corporation

Center for Heterogeneous Integration Research in Packaging

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3