Effect of Humidity Exposure on Microstructure and Photoluminescence Properties of Polycrystalline CsI(Tl) Screens

Author:

Guo Lina1ORCID,Jiang Biyou1,Tian Chunhui2,Chen Ping1,Liu Shuang2

Affiliation:

1. Shanxi Provincial Key Center for Modern Nondestructive Testing Engineering, School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

2. State Key Laboratory of Electronic Thin Screens and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

CsI(Tl) scintillation screens have been widely applied in X-ray nondestructive testing (NDT) because of their low cost, high scintillation efficiency, and fluorescence guide columnar microstructures. The effect of humidity exposure on the microstructure and photoluminescence properties of polycrystalline CsI(Tl) screens was investigated in this work. The results indicate that the grain diameter of the columnar microstructure increased with increased exposure time in a humid environment. The degree of anisotropy of polycrystalline screens changed from (211) and (310) to (110) orientation with exposure time. FT-IR Spectra of the exposed screens peaked at 3734 cm−1, 3710 cm−1, 3676 cm−1, 3647 cm−1, 3627 cm−1, 3598 c−1, and 3566 cm−1 due to the symmetrical and asymmetrical stretching vibrations of water molecules. In addition, the photoluminescence properties of exposed screens decreased with increased humidity exposure time due to the deliquescence caused by water molecules. After hours of humidity exposure, the photoluminescence and imaging properties of the screens decrease obviously and tend to reduce slowly. The moisture absorption and deliquescence would directly affect the service reliability and the storage lifetime of polycrystalline CsI(Tl) screens.

Funder

National Natural Science foundation of China

Shanxi Provincial Science and Technology Support Project

Foundation of State Key Laboratory of Dynamic Measurement Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3