Microstructure and Solute Concentration Analysis of Epitaxial Growth during Wire and Arc Additive Manufacturing of Aluminum Alloy

Author:

Geng Ruwei1ORCID,Cheng Yanhai1,Chao Luqiang2,Wei Zhengying3,Ma Ninshu4

Affiliation:

1. School of Mechanical Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Shandong Jiaotong College Mechanical Equipment Technology Company, Jinan 250031, China

3. State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China

4. Joining and Welding Research Institute, Osaka University, Mihogaoka, Ibaraki 567-0047, Osaka, Japan

Abstract

Microstructure and solute distribution have a significant impact on the mechanical properties of wire and arc additive manufacturing (WAAM) deposits. In this study, a multiscale model, consisting of a macroscopic finite element (FE) model and a microscopic phase field (PF) model, was used to predict the 2319 Al alloy microstructure evolution with epitaxial growth. Temperature fields, and the corresponding temperature gradient under the selected process parameters, were calculated by the FE model. Based on the results of macroscopic thermal simulation on the WAAM process, a PF model with a misorientation angle was employed to simulate the microstructure and competitive behaviors under the effect of epitaxial growth of grains. The dendrites with high misorientation angles experienced competitive growth and tended to be eliminated in the solidification process. The inclined dendrites are commonly hindered by other grains in front of the dendrite tip. Moreover, the solute enrichment near the solid/liquid interface reduced the driving force of solidification. The inclined angle of dendrites increased with the misorientation angle, and the solute distributions near the interface had similar patterns, but various concentrations, with different misorientation angles. Finally, metallographic experiments were conducted on the WAAM specimen to validate the morphology and size of the dendrites, and electron backscattered diffraction was used to indicate the preferred orientation of grains near the fusion line, proving the existence of epitaxial growth.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3